miércoles, 29 de agosto de 2012

Robot Curiosity

 Vehículo explorador Curiosity.
Organización NASA
Tipo de misión Vehículo explorador tipo rover
Lanzamiento 26 de noviembre 16:02, 2011
Cohete Atlas V 541
Reingreso 6 de agosto 2012, 20:12 EDT (7 de agosto 2012, 02:12 CEST)
Duración 1 año marciano (1,88 años terrestres; 686 días)
Masa 899 kg
Energía Generador termoeléctrico de radioisótopos (RTG)
Web Sitio de la NASA para la misión MSL
La Mars Science Laboratory (abreviada MSL), conocida como Curiosity, del inglés 'curiosidad', es una misión espacial que incluye un astromóvil de exploración marciana dirigida por la NASA. Programada en un principio para ser lanzada el 8 de octubre de 2009 y efectuar un descenso de precisión sobre la superficie del planeta en 2010 entre los meses de julio y septiembre. Fue lanzado el 26 de noviembre de 2011 a las 10:02 am EST, y aterrizó en Marte exitosamente en el cráter Gale el 6 de agosto de 2012 aproximadamente a las 05:31 UTC enviando sus primeras imágenes a la Tierra.
La misión se centró en colocar sobre la superficie marciana un vehículo explorador de tipo rover. Este vehículo es tres veces más pesado y dos veces más grande que los vehículos utilizados en la misión Mars Exploration Rover, que aterrizaron en el año 2004. Porta instrumentos científicos más avanzados que ninguna otra misión dirigida a Marte. La comunidad internacional proporcionó algunos de estos instrumentos. Se lanzó a través de un cohete Atlas V 541. Una vez en el planeta, el rover tomó fotos para probar que amartizó con éxito. En el transcurso de su misión tomará docenas de muestras de suelo y polvo rocoso marciano para su análisis. La duración de la misión será de 1 año marciano (1,88 años terrestres). Con un rango de exploración superior a los enviados anteriormente, investigará la capacidad pasada y presente de Marte para alojar vida.

El MSL tiene cuatro objetivos: Determinar si existió vida alguna vez en Marte, caracterizar el clima de Marte, determinar su geología y prepararse para la exploración humana de Marte. Para contribuir a estos cuatro objetivos científicos y conocer el objetivo principal (establecer la habitabilidad de Marte) el MSL tiene ocho cometidos:
Evaluación de los procesos biológicos:
1.º Determinar la naturaleza y clasificación de los componentes orgánicos del carbono.
2.º Hacer un inventario de los principales componentes que permiten la vida: carbono, hidrógeno, nitrógeno, oxígeno, fósforo y azufre.
3.º Identificar las características que representan los efectos de los procesos biológicos.
Objetivos geológicos y geoquímicos:

4.º Investigar la composición química, isotópica y mineral de la superficie marciana.
5.º Interpretar el proceso de formación y erosión de las rocas y del suelo.
Evaluación de los procesos planetarios:

6.º Evaluar la escala de tiempo de los procesos de evolución atmosféricos.
7.º Determinar el estado presente, los ciclos y distribución del agua y del dióxido de carbono.
Evaluación de la radiación en superficie:

8.º Caracterizar el espectro de radiación de la superficie, incluyendo radiación cósmica, erupciones solares y neutrones secundarios.
CARACTERISTICAS:
Fuente de energía.- El Mars Science Laboratory utiliza un "Generador termoeléctrico de radioisótopos" (RTG) fabricado por Boeing; este generador consiste en una cápsula que contiene radioisótopos de plutonio-238 y el calor generado por este es convertido en electricidad por medio de un termopar,[8] produciendo así 2.5 kilovatios-hora por día.[9] Aunque la misión está programada para durar aproximadamente dos años, el generador RTG tendrá una vida mínima de catorce años.
Carga útil de instrumentos propuesta.- Actualmente se han elegido 12 instrumentos para el desarrollo de la misión:
Cámaras.- (MastCam, MAHLI, MARDI, Hazcams, Navcams)Todas las cámaras han sido desarrolladas por Malin Space Science Systems; todas comparten un diseño común en cuanto a componentes tales como dispositivos para el procesamiento instantáneo de imágenes, y sensores CCD de 1600 X 1200
MastCam: Este sistema proporciona imágenes en múltiples espectros y en color real a través de cámaras con visión estereoscópica (tridimensional). Las tomas en color real son de 1200 x 1200 pixeles y a una velocidad de 10 cuadros por segundo, en un formato de video de alta definición de 1280 x 720. En contraste con la cámara panorámica usada en la misión MER la cual solo puede generar imágenes de 1024 x 1024 en blanco y negro. La rueda con los filtros, diseñada para la toma de imágenes en distintos espectros, usada en la misión MER, también será utilizada en la MastCam.
Mars Hand Lens Imager (MAHLI): Este sistema consiste en una cámara montada en un brazo robótico del rover, y se usará para obtener tomas microscópicas de las rocas y suelo marciano, del mismo modo que el MI usado en la MER, aunque a diferencia de este, será capaz de tomar imágenes en color verdadero de 1600 x 1200 pixeles y con una resolución de 12.5 micrómetros por pixel. MAHLI tiene iluminación a base de leds en luz blanca y ultravioleta para la toma de imágenes en la oscuridad o fluorescentes. MAHLI tiene enfoque mecánico en un rango de infinito a distancias milimétricas.
MSL Mars Descent Imager (MARDI): Durante el descenso a la superficie marciana MARDI será capaz de lograr tomas de imágenes en color de 1600 x 1200 pixeles comenzando a una distancia de 3.7 kilómetros hasta los 5 metros de altura respecto del suelo. El manejo de imágenes a través de MARDI permitirá hacer un mapeo del terreno circundante y del sitio de aterrizaje. El 16 de septiembre del 2007 la NASA anunció que MARDI no sería incluido en la misión debido a problemas de fondos económicos.[10] MARDI fue subsecuentemente reafirmado, después de que la Malin Space Science Systems aceptó que no habría costos adicionales a la NASA para su inclusión.[11] MARDI tomará imágenes a razón de 5 cuadros por segundo durante cerca de 2 minutos, en el descenso.
Hazard Avoidance Cameras (Hazcams): En el MSL se utilizarán cuatro pares de cámaras de navegación en blanco y negro situadas en la parte delantera, izquierda, derecha y trasera del vehículo. Las cámaras de evasión de riesgos (también llamado Hazcams) se utilizan para la prevención de riesgos en las unidades del rover y para la colocación segura del brazo robótico en las rocas y en los suelos. Las cámaras se utilizan para captar la luz visible en tres dimensiones (3-D) de las imágenes. Las cámaras tienen unos 120 grados de campo de visión y un mapa del terreno de hasta 10 pies (3 metros) en frente del vehículo. Estas imágenes de salvaguarda sirven para que el vehículo no choque inadvertidamente contra obstáculos inesperados, y trabaja en conjunto con el software que permite que el rover se desplace con seguridad.
Navigation Cameras (Navcams): El MSL utiliza dos pares de cámaras de navegación en blanco y negro montadas sobre el mástil de apoyo para la navegación del suelo. Las cámaras se utilizan para captar la luz visible en tres dimensiones (3-D) de imágenes. Las cámaras tienen unos 45 grados de campo de visión.
Espectrómetros.-
ChemCam: ChemCam es un sistema de espectroscopia de colapso inducida por rayo láser (LIBS -siglas en inglés), el cual puede apuntar a una roca a una distancia de 13 metros, vaporizando una pequeña cantidad de los minerales subyacentes en ella y recogiendo el espectro de luz emitida por la roca vaporizada usando una cámara con una resolución angular de 80 microradianes. Está siendo desarrollada por el Laboratorio Nacional de Los Álamos y el laboratorio francés CESR (a cargo del rayo láser). Utiliza un rayo láser infrarrojo con una longitud de onda de 1067 nanómetros y un pulso de 5 nanosegundos, que enfocará en un punto de 1 GW/cm2, depositando 30 mJ (milijulios) de energía. La detección se logrará entre los 240 y los 800 nanómetros.[13] [14] [15] En octubre del 2007 la NASA anunció que se detenía el desarrollo del dispositivo debido a que el costo había llegado a un 70 % del costo proyectado y se terminaría solo con el dinero ya proporcionado.[16] El Laboratorio Nacional de Los Álamos afirmó que el sobrecosto se debió a los requerimientos impuestos por la misión del rover y el ahorro en costos era mínimo debido a que el dinero provenía de la CNES francesa.[17]
Espectrómetro de rayos X por radiación alfa (APXS): Este dispositivo irradiará muestras con partículas alfa y permitirá su análisis a partir del espectro generado por los rayos X reemitidos. Está siendo desarrollado por La Agencia Espacial Canadiense, para determinar la composición elemental de muestras. El sistema APXS es una forma de PIXE. Instrumentos similares fueron incluidos en la misión Mars Pathfinder y en la Mars Exploration Rovers.[18]
CheMin: Chemin es la abreviación usada para el Instrumento de análisis químico y mineralógico a través de la difracción y fluorescencia de rayos X, el cual cuantifica y analiza la estructura de los minerales contenidos en una muestra. Es desarrollado por el doctor David Blake en el NASA Ames Research Center y el NASA Jet Propulsion Laboratory[19]
Análisis de muestras en Marte (SAM): El instrumento así denominado, analizará muestras sólidas y gaseosas en búsqueda de compuestos orgánicos. Está siendo desarrollado por el Centro de vuelo espacial Goddard de la NASA y el Laboratoire Inter-Universitaire des Systèmes Atmosphériques (LISA) (Laboratorio Inter-Universitario de Sistemas Atmosféricos). SAM consiste en un sistema de manipulación de muestras con 74 copas las cuales pueden ser calentadas a una temperatura de 1000 °C para enriquecer y derivar moléculas orgánicas de la muestra misma. El espectrómetro de cromatografía de gases es un espectrómetro cuadripolar con una rango de masa Dalton de 2-235 el cual obtiene información a través de las seis columnas cromatográficas de gases. El espectrómetro láser ajustable es capaz de medir radios de isótopos de carbono y oxígeno en el bióxido de carbono.
Detectores de radiaciónDetector por evaluación de radiación (RAD): Este instrumento analizará toda la gama e intensidad de radiación espacial y radiación solar que recibe la superficie de Marte, con el objetivo de diseñar protección contra la radiación para exploradores humanos. Este instrumento está financiado por la NASA y desarrollado por la universidad Southwest Research Institute (SwRI) en EE.UU. y la universidad alemana Christian-Albrechts-Universität zu Kiel.
Albedo dinámico de neutrones (DAN): DAN es una fuente pulsante de neutrones, la cual será utilizada para medir la concentración de hidrógeno o agua bajo la superficie cercana. Este instrumento es proporcionado por la Agencia Espacial Federal Rusa.
Sensores medioambientalesEstación de supervisión ambiental rover (REMS): Esta es una estación meteorológica que medirá la presión atmosférica, humedad, dirección y fuerza del viento, así como la temperatura ambiental y los niveles de radiación ultravioleta. El desarrollo del equipo ha sido liderado por el Centro de Astrobiología con el apoyo del Centro para el Desarrollo Tecnológico Industrial y el Ministerio de Educación y Ciencia, el Ministerio de Defensa a través del Instituto Nacional de Técnica Aeroespacial de España y con la colaboración de Finnish Metereological Institute (Vídeo oficial del aparato REMS).
Instrumentación para el ingreso, descenso y aterrizaje (MEDLI)El objetivo del módulo MEDLI es medir la densidad de la atmósfera exterior, así como la temperatura y función del escudo térmico de la sonda durante su ingreso a la atmósfera marciana. Los datos obtenidos serán utilizados para entender y describir mejor la atmósfera marciana y ajustar los márgenes de diseño y procedimientos de entrada requeridos para las sondas futuras

viernes, 11 de noviembre de 2011

Asimo 2011, el robot mas inteligente


Asimo, el robot humanoide de propiedad de Honda, ahora es más veloz, se balancea en superficies irregulares y hasta puede ayudar en tareas de rescate nuclear.

Asimo, el robot humanoide de propiedad de Honda ahora puede inclusive saltar sobre un pie, servir una bebida e incluso "pensar" por cuenta propia.

La demostración de estas nuevas habilidades

De esta forma, Honda responde a las críticas según las cuales Asimo, presentado por primera vez en el 2000, que decían que hasta ahora había resultado poco práctico, al punto que muchos lo llamaban simplemente un juguete o, como recoge la agencia AP, un agradable escaparate de la marca Honda Motor Co. fue realizada por Honda este martes en las instalaciones del centro de investigación de la empresa, en las afueras de Tokio, y con ella no sólo demostraron que esta máquina de apariencia casi infantil es más ágil y un poco más lista.

Takanobu Ito, presidente de Honda, aseguró que alguna de la tecnología de Asimo f


El brazo mecánico puede abrir y cerrar las válvulas de la planta nuclear Fukushima Dai-ichi, que sufrió una fisión después del tsunami del 11 de marzo, de acuerdo con Honda. La gigante automotriz japonesa colabora con la empresa que opera la planta para resolver el problema nuclear, Tokyo Electric Power Co. (TEPCO), para tratar de cumplir las demandas de retomar el control de las instalaciones.ue utilizada para desarrollar un brazo robótico en tan solo seis meses con el fin de ayudar para revertir la crisis nuclear en la costa noreste de Japón, a raíz del tsunami del pasado marzo.

Ito reconoció que la idea inicial era enviar a Asimo al lugar para ayudar, pero eso resultó imposible dado que el robot no puede maniobrar entre los escombros y sus delicadas partes de computadora podrían fallar por efectos de la radiación.

La demostración que realizó Honda el martes del reformado "Asimo" en las instalaciones del centro de investigación de la empresa, en las afueras de Tokio, no sólo tuvo el propósito de demostrar que la máquina de apariencia infantil es más ágil y un poco más listo.

También fue una respuesta a las críticas que aseguraban que Asimo, presentado por primera vez en el 2000, que decian que hasta ahora había resultado poco práctico, lo que presuntamente demostraba que no era más que un juguete glorificado y un agradable escaparate de la marca Honda Motor Co.

Aporte nuclear

Takanobu Ito, presidente de Honda, dijo a los reporteros que alguna de la tecnología de Asimo fue utilizada para desarrollar un brazo robótico en tan solo seis meses con el fin de ayudar para revertir la crisis nuclear en la costa noreste de Japón.

El brazo mecánico puede abrir y cerrar las válvulas de la planta nuclear Fukushima Dai-ichi, que sufrió una fisión después del tsunami del 11 de marzo, de acuerdo con Honda. La gigante automotriz japonesa colabora con la empresa que opera la planta para resolver el problema nuclear, Tokyo Electric Power Co. (TEPCO), para tratar de cumplir las demandas de retomar el control de las instalaciones.

Ito reconoció que la idea inicial era enviar a Asimo al lugar para ayudar, pero eso resultó imposible dado que el robot no puede maniobrar entre los escombros y sus delicadas partes de computadora podrían fallar por efectos de la radiación.